函式不連續就一定不可導,為什麼,一個函式不連續就一定不可導,為什麼

2021-03-03 21:30:07 字數 5596 閱讀 1865

1樓:小甜甜愛亮亮

x=x0點的導數的定義公式

lim(x→x0)[f(x)-f(x0)]/(x-x0)

如果函式在x0點可導,那麼這個極限必須存在,即等於一個有限常數,設為a

即lim(x→x0)[f(x)-f(x0)]/(x-x0)=a

而f(x)-f(x0)=(x-x0)[f(x)-f(x0)]/(x-x0)

所以lim(x→x0)[f(x)-f(x0)]

=lim(x→x0)(x-x0)[f(x)-f(x0)]/(x-x0)

=lim(x→x0)(x-x0)*lim(x→x0)[f(x)-f(x0)]/(x-x0)

=0*a=0

而lim(x→x0)[f(x)-f(x0)]

=lim(x→x0)f(x)-lim(x→x0)f(x0)

因為f(x0)是常數(函式式在任何一點上的函式值都是常數)

所以lim(x→x0)f(x0)=f(x0)

所以lim(x→x0)[f(x)-f(x0)]

=lim(x→x0)f(x)-f(x0)=0

lim(x→x0)f(x)=f(x0)

f(x)在x0點處極限值等於函式值,所以在x0點處連續。

這是函式的導數定義公式確定的。

函式的定義:給定一個數集a,假設其中的元素為x。現對a中的元素x施加對應法則f,記作f(x),得到另一數集b。

假設b中的元素為y。則y與x之間的等量關係可以用y=f(x)表示。我們把這個關係式就叫函式關係式,簡稱函式。

函式概念含有三個要素:定義域a、值域c和對應法則f。其中核心是對應法則f,它是函式關係的本質特徵。

函式(function),最早由中國清朝數學家李善蘭翻譯,出於其著作《代數學》。之所以這麼翻譯,他給出的原因是「凡此變數中函彼變數者,則此為彼之函式」,也即函式指一個量隨著另一個量的變化而變化,或者說一個量中包含另一個量。函式的定義通常分為傳統定義和近代定義,函式的兩個定義本質是相同的,只是敘述概念的出發點不同,傳統定義是從運動變化的觀點出發,而近代定義是從集合、對映的觀點出發。

一個函式不連續就一定不可導,為什麼

2樓:子不語望長安

證明過程:

x=x0點的導數:lim(x→x0)[f(x)-f(x0)]/(x-x0)

若函式在x0點可導,極限必須存在,設極限為a

即lim(x→x0)[f(x)-f(x0)]/(x-x0)=a

f(x)-f(x0)=(x-x0)[f(x)-f(x0)]/(x-x0)

所以lim(x→x0)[f(x)-f(x0)]=lim(x→x0)(x-x0)[f(x)-f(x0)]/(x-x0)

=lim(x→x0)(x-x0)*lim(x→x0)[f(x)-f(x0)]/(x-x0)=0*a=0

而lim(x→x0)[f(x)-f(x0)]=lim(x→x0)f(x)-lim(x→x0)f(x0)

因為f(x0)是常數,所以lim(x→x0)f(x0)=f(x0)

所以lim(x→x0)[f(x)-f(x0)]=lim(x→x0)f(x)-f(x0)=0

lim(x→x0)f(x)=f(x0),所以連續。

函式可導的條件:

如果一個函式的定義域為全體實數,即函式在其上都有定義,那麼該函式是不是在定義域上處處可導呢?答案是否定的。

函式在定義域中一點可導需要一定的條件:函式在該點的左右導數存在且相等,不能證明這點導數存在。只有左右導數存在且相等,並且在該點連續,才能證明該點可導。

可導的函式一定連續;連續的函式不一定可導,不連續的函式一定不可導。

在微積分學中,一個實變數函式是可導函式,若其在定義域中每一點導數存在。直觀上說,函式影象在其定義域每一點處是相對平滑的,不包含任何尖點、斷點。

3樓:韓苗苗

x=x0點的導數:lim(x→x0)[f(x)-f(x0)]/(x-x0)

若函式在x0點可導,極限必須存在,設極限為a

即lim(x→x0)[f(x)-f(x0)]/(x-x0)=a

f(x)-f(x0)=(x-x0)[f(x)-f(x0)]/(x-x0)

所以lim(x→x0)[f(x)-f(x0)]=lim(x→x0)(x-x0)[f(x)-f(x0)]/(x-x0)

=lim(x→x0)(x-x0)*lim(x→x0)[f(x)-f(x0)]/(x-x0)=0*a=0

而lim(x→x0)[f(x)-f(x0)]=lim(x→x0)f(x)-lim(x→x0)f(x0)

因為f(x0)是常數,所以lim(x→x0)f(x0)=f(x0)

所以lim(x→x0)[f(x)-f(x0)]=lim(x→x0)f(x)-f(x0)=0

lim(x→x0)f(x)=f(x0)

f(x)在x0點處極限值等於函式值,所以在x0點處連續。

擴充套件資料

如果一個函式在x0處可導,那麼它一定在x0處是連續函式。

函式可導定義:

(1)設f(x)在x0及其附近有定義,則當a趨向於0時,若 [f(x0+a)-f(x0)]/a的極限存在, 則稱f(x)在x0處可導。

(2)若對於區間(a,b)上任意一點m,f(m)均可導,則稱f(x)在(a,b)上可導。

連續的函式就是當輸入值的變化足夠小的時候,輸出的變化也會隨之足夠小的函式。如果輸入值的某種微小的變化會產生輸出值的一個突然的跳躍甚至無法定義,則這個函式被稱為是不連續的函式。

如果一個函式在定義域中的某個點f(c) 可微,則它一定在點c 連續。反過來不成立;連續的函式不一定可微。例如,絕對值函式在點c=0 連續,但不可微。

4樓:匿名使用者

你看看導數的定義公式

x=x0點的導數的定義公式

lim(x→x0)[f(x)-f(x0)]/(x-x0)

如果函式在x0點可導,那麼這個極限必須存在,即等於一個有限常數,設為a

即lim(x→x0)[f(x)-f(x0)]/(x-x0)=a

而f(x)-f(x0)=(x-x0)[f(x)-f(x0)]/(x-x0)

所以lim(x→x0)[f(x)-f(x0)]

=lim(x→x0)(x-x0)[f(x)-f(x0)]/(x-x0)

=lim(x→x0)(x-x0)*lim(x→x0)[f(x)-f(x0)]/(x-x0)

=0*a=0

而lim(x→x0)[f(x)-f(x0)]

=lim(x→x0)f(x)-lim(x→x0)f(x0)

因為f(x0)是常數(函式式在任何一點上的函式值都是常數)

所以lim(x→x0)f(x0)=f(x0)

所以lim(x→x0)[f(x)-f(x0)]

=lim(x→x0)f(x)-f(x0)=0

lim(x→x0)f(x)=f(x0)

f(x)在x0點處極限值等於函式值,所以在x0點處連續。

這是函式的導數定義公式確定的。

5樓:路路通

一個函式可導則函式一定連續(這個應該不用證了吧) 則如果如果一個函式不連續但可導 就相互矛盾了

6樓:鐔婄悆鐞凁煈

你可以想成逆否命題 可導必連續的逆否命題是不連續一定不可導

7樓:匿名使用者

不一定,有間斷點的,將y=x在點x=1處挖空,y=x在點x=1處就連續了,但y=x在x=1處可導,可導定義只要求左右極限存在且相等,y=x在x趨向於1的左右極限存在且相等=1。

函式不連續也可以可導的。

為什麼連續的函式不一定可導?可導的函式一定連續?

8樓:匿名使用者

在數學領域,函式是一種關係,這種關係使一個集合裡的每一個元素對應到另一個(可能相同的)集合裡的唯一元素。函式不是指具體哪個數

舉例啊,比如:

正弦函式: y=sinx

餘弦函式: y=cosx

其中x是自變數,y是因變數

畫起圖的話,上面這兩條函式線都是沒有斷開的,光滑的,沒有稜角的,可導就是這個樣子啦。連續但是不可導的函式那種線雖然從頭到尾連著,但是不光滑,有稜角的,用手摸一下就知道啦。

9樓:

連續函式y=|x|,x取任意實數,當x=0的時候函式不可導,但是連續

10樓:雋冬諸承平

對連續的函式比如y=|x|

在x=0這點是連續的

但是在這點不可導

你可以畫出這個函式的影象看看,在0左邊時導數是-1在0右邊導數是1

所以不可導

希望對你有啟發

為什麼這個函式可導不連續?書上寫的可導一定連續,連續不一定可導

11樓:市曼華魚琴

當然不可導,你來用求導公

自式去求導數看看能不能求得導數來?

不要用兩邊的函式式去求,要用導數的定義公式去求就知道了。

f'(x0)=lim(x→x0)[f(x)-f(x0)]/(x-x0)

用這個定義公式去求。就知道這個函式在x0點不可導。

首先分母的極限是0,但是因為lim(x→x0)f(x)≠f(x0),所以分子的極限不是0。所以f'(x0)=lim(x→x0)[f(x)-f(x0)]/(x-x0)這個極限是無窮大,在x=x0點不可導。

函式可到與連續之間的關係,其中有一句是,連續未必可導,什麼意思? 是不是這個點確定,就不可導了?

12樓:demon陌

連續反映到影象上就是:在定義域內影象是一條連續的線。

首先,連續和可導都是針對某個點而言的。

某點處導數值的幾何含義是切線斜率,則一點處可導反映到影象上就是此點處可做出切線,很顯然此點處斷開、或者出現稜角狀都做不出切線(此點是稜角的頂點,該點處做切線會出現蹺蹺板一樣的情況,無法確定唯一切線),即不可導。

而斷開和稜角狀兩種不可導的情況中,稜角狀的曲線在該點處仍然是連續的。所以連續不一定可導,因為存在連續的但卻是稜角的頂點的點(不可導)。

舉例:y=|x|的例子當中,x=0處是一個直角,所以無法做出切線,會出現蹺蹺板,所以是不可導。

可導→存在切線斜率→存在切線→此點處存在光滑鄰域;處處可導→光滑曲線(無稜角)

13樓:匿名使用者

其實你從影象上更容易理解。連續反映到影象上就是:在定義域內影象是一條連續的線。

首先,連續和可導都是針對某個點而言的。

某點處導數值的幾何含義是切線斜率,則一點處可導反映到影象上就是此點處可做出切線,很顯然此點處斷開、或者出現稜角狀都做不出切線(此點是稜角的頂點,該點處做切線會出現蹺蹺板一樣的情況,無法確定唯一切線),即不可導。

而斷開和稜角狀兩種不可導的情況中,稜角狀的曲線在該點處仍然是連續的。所以連續不一定可導,因為存在連續的但卻是稜角的頂點的點(不可導)。

y=|x|的例子當中,x=0處是一個直角,所以無法做出切線,會出現蹺蹺板,所以是不可導。

如果從可導定義中來看,必須左右導數同時存在並且相等,x=0處左右導數均存在,但是不相等。此處左右導數不相等就意味著此點處會出現斜率突變,反映到直觀影象上就是「稜角」,只是轉換成了數學語言表達。

注:理解好導數的幾何意義非常有利於幫助理解可導和連續之間的關係。

可導→存在切線斜率→存在切線→此點處存在光滑鄰域;處處可導→光滑曲線(無稜角)

原函式可導為什麼導函式不一定連續

原函式可導,導函式不一定連續。舉例說明如下 當x不等於0時,f x x 2 sin 1 x 當x 0時,f x 0 這個函式在 處處可導。導數是f x 當x不等於0時,f x 2xsin 1 x cos 1 x 當x 0時,f x lim lim xsin 1 x x 0 0 lim f x x 0...

連續函式不一定可導,那為什麼連續函式一定存在原函式呢

可以這樣理解,求導是從函式拿走一些 東西 屬性 積分是賦予函式一些東西 回屬性答 你想從我這拿走的東西我可能沒有 連續函式不一定可導 但是如果你可以給送給我東西 可積 那一旦你給我 積分 我自然就有了 原函式存在 首先連續函式一定bai可積du,這是一個被證明過zhi的定理,這裡只想dao給一個具體...

多元函式微分 二階偏導連續,混合偏導數就一定相等嗎?為什麼

一定相等。因為先對x求偏導或是先對y求偏導沒有區別,對x求偏導時y看作常數,對y求偏導x看作常數。所以無論先對哪個求導結果一樣。不應定,要看具體情況 為什麼二階偏導數連續 混合偏導就相等啊?50 f x,y x 3y 3sin 1 xy xy 0.f x,y 0,xy 0.1.xy 0,顯然有 fx...