求曲線y x 2,直線x 2,y 0所圍成的圖形,繞y軸旋轉所得旋轉體的體積

2021-03-29 00:35:27 字數 4026 閱讀 1515

1樓:drar_迪麗熱巴

利用薄殼法,得

體積=2π∫(0,2)xydx

=2π∫(0,2)x³dx

=π/2 x的4次方 (0,2)

=8π薄殼的幾何形狀和變形情況通常都很複雜,必須引入一系列簡化假設才能進行研究。最常用的假設是基爾霍夫-樂甫假設,以此為基礎可建立薄殼的微分方程組,通過解微分方程組可得到殼體中的位移和應力。

基爾霍夫-樂甫假設  2023年德國的h.阿龍將薄板理論中的基爾霍夫假設推廣到殼體。2023年經英國的a.e.h.樂甫修正,形成至今仍然廣泛採用的薄殼理論。

2樓:登興有譙水

這個體積公式,y=f(x),x=a,x=b,x軸圍成的曲邊梯形繞x軸旋轉一週形成的實心立體的體積公式

v=π∫(0,1)f^2(x)dx

你現在求的是兩個題體積的差,帶入公式就得到上面的解題過程。

3樓:匿名使用者

利用薄殼法,得

體積=2π∫(0,2)xydx

=2π∫(0,2)x³dx

=π/2 x的4次方 (0,2)=8π

求曲線y=x^2,直線x=2,y=0所圍成的圖形分別繞x軸,y軸旋轉所得旋轉體的體積

4樓:匿名使用者

繞x軸體積=π∫(0,2)【x²】²dx

=π/5x的5次方 (0,2)

=32π/5

繞y軸體積=2π∫(0,2)xydx

=2π∫(0,2)x³dx

=π/2 x的4次方 (0,2)=8π

5樓:宛丘山人

繞x軸體積v=π∫(0,2)x^4dx

=π/5x^5|[0,2]

=32π/5

繞y軸體積v=π∫[0,4][2^2-y]dy=π[4y-y^2/2][0,4]

=(16-8)π=8π

求曲線y=x^2與x=1,y=0所圍圖形分別繞x軸和y軸旋轉所得旋轉體的體積

6樓:南宮丹秋銀萌

y=x^2和x=1相交於(bai1,1)

點,繞x軸旋du轉所成體積v1=πzhi∫(dao內0→1)y^2dx

=π∫(0→1)x^4dx

=πx^5/5(0→1)

=π/5.

繞y軸旋容轉所成體積v2=π*1^2*1-π∫(0→1)(√y)^2dy

=π-πy^2/2(0→1)

=π/2.

其中π*1^2*1是圓柱的體積,而π∫(0→1)(√y)^2dy是拋物線y=x^2、y=1、x=0圍成的圖形繞y軸旋轉的體積。

7樓:庹靖徐達

解:聯立方程bai組

x=2y=x^3

解得兩曲線的交du點(2,8)

所圍成zhi的平面圖形繞y軸旋轉dao的旋轉體體積為版v=∫(0,8)

π權[2^2

-[(³√y)^2]dy=

π|(0,8)

=64π/5

解題說明:(0,8)表示以0為下限,8為上限的積分割槽間;

解題思路:可看成大的旋轉體中挖去一個小的旋轉體,類似於中學接觸過的圓柱體中挖掉一個圓錐體。

求曲線y=x^2與x=1,y=0所圍圖形分別繞x軸和y軸旋轉所得旋轉體的體積

8樓:匿名使用者

^y=x^2和x=1相交於(

1,1)點,

繞x軸旋轉所成體積v1=π∫(0→1)y^2dx=π∫(0→1)x^4dx

=πx^5/5(0→1)

=π/5.

繞y軸旋轉所成體積v2=π*1^2*1-π∫(0→1)(√y)^2dy

=π-πy^2/2(0→1)

=π/2.

其中π*1^2*1是圓柱的體積,而π∫(0→1)(√y)^2dy是拋物線y=x^2、y=1、x=0圍成的圖形繞y軸旋轉的體積。

求由曲線y=x^3與直線x=2,y=0所圍平面圖形繞y軸旋轉一週而成的旋轉體的體積.

9樓:匿名使用者

答案沒錯。過程如圖。經濟數學團隊幫你解答。請及**價。謝謝!

求由y=2x-x^2與y=0所圍成圖形繞y軸所得旋轉體體積 謝謝了

10樓:寂寞的楓葉

由y=2x-x^2與y=0所圍成圖形繞y軸所得旋轉體體積為8π/3。

解:因為由y=2x-x^2,可得,

x=1±√(1-y)。

又由於平面圖形是由=2x-x^2與y=0所圍成,那麼可得0≤x≤2,0≤y≤1。

那麼根據定積分求旋轉體體積公式,以y為積分變數,可得體積v為,

v=∫(0,1)(π*(1+√(1-y))^2-π*(1-√(1-y))^2)dy

=4π∫(0,1)√(1-y)dy

=-4π∫(0,1)√(1-y)d(1-y)

=-4π*(2/3*(1-y)^(3/2))(0,1)

=-8π/3*(1-y)^(3/2)(0,1)

=-8π/3*(1-1)^(3/2)-(-8π/3*(1-0)^(3/2))

=8π/3

擴充套件資料:

1、定積分∫(a,b)f(x)dx的性質

(1)當a=b時,∫(a,b)f(x)dx=0。

(2)當a>b時,∫(a,b)f(x)dx=-∫(b,a)f(x)dx。

(3)常數可以提到積分號前。即∫(a,b)k*f(x)dx=k*∫(a,b)f(x)dx。

2、利用定積分求旋轉體的體積

(1)找準被旋轉的平面圖形,它的邊界曲線直接決定被積函式。

(2)分清端點。

(3)確定幾何體的構造。

(4)利用定積分進行體積計算。

3、定積分的應用

(1)解決求曲邊圖形的面積問題

(2)求變速直線運動的路程

做變速直線運動的物體經過的路程s,等於其速度函式v=v(t) (v(t)≥0)在時間區間[a,b]上的定積分。

(3)求變力做功

某物體在變力f=f(x)的作用下,在位移區間[a,b]上做的功等於f=f(x)在[a,b]上的定積分。

11樓:唐衛公

y = 2x - x² = 1 - (x - 1)²此為開口向下,頂點為(1, 1)的拋物線; 所需考慮的是其與軸間的部分。

圖形繞y軸旋轉, 以y為自變數更方便.

在y處(0 < y < 1),x值有兩個:

y = 1 - (x - 1)²

x = 1±√(1 - y)

旋轉體在y處的截面為圓環,內外徑分別為r =1-√(1 - y), r = 1+√(1 - y)

截面積 = πr² - πr² = π[1 +√(1 - y)]² - π[1 - √(1 - y)]²

= 4π√(1 - y)

v = ∫¹₀4π√(1 - y)dy

= (-8π/3)(1-y)³/² |¹₀= 0 + 8π/3

= 8π/3

計算由曲線y=√x與直線x=2,y=0所圍成的圖形分別繞x軸,y軸旋轉所得的旋轉體體積

12樓:匿名使用者

y=√x與直線x=2,y=0所圍成的圖形繞y軸旋轉所得的旋轉體體積:(16√2/5)π。

求由曲線y=x2及x=y2所圍圖形的面積,並求其繞y軸旋轉一週所得旋轉體的體積

13樓:舊時光

由於曲線y=x2

及x=y2的交點為0和1,

故所圍成的面積在(0,1)上積分,

於是有:

a=∫10 (

x ?x

)dx=[23x

32?x3

]10=1

3由於繞y軸旋轉一週,所以對y進行積分,積分割槽域為(0,1),故可得:

v=π∫10

(y?y

)dy=π[y2?y

5]10

=π310

=3π10.

求由曲線y x 3與直線x 2,y 0所圍成的圖形繞x軸旋轉產生的立體的體積

體積 0,2 x dx 0,2 x 6dx 7 x 7 0,2 128 7 曲線y sinx與直線x 2,y 0所圍成的圖形繞y軸旋轉產生的旋轉體的體積 具體回答如圖 任何一根連續的線條都稱為曲線。包括直線 折線 線段 圓弧等。曲線是1 2維的圖形,參考 分數維空間 處處轉折的曲線一般具有無窮大的長...

曲線y x 2與直線y x所圍成的平面圖形繞x軸轉一週得到旋轉體的體積為A

曲線y x2 與直線y x交於點 baio 0,0 和dua 1,0 根據旋轉體的zhi 積分計算公式,dao可得 該旋轉體的體積專為v 10 屬x2 x4 dx 1 3 x3 1 5 x5 10 1 3 13 1 5 15 1 3 03 1 5 05 2 15 故選 c 曲線y x 與直線x 1及...

求曲線yx2和xy2所圍成的平面圖形,繞X軸旋

體積 pi x 1 2 2 pi x 2 2 dx 體積 pi x 1 2 2 pi x 2 2 dx正解 求由曲線y x 2及x y 2所圍圖形繞x軸旋轉一週所生成的旋轉體的體積。最好有圖形和計算的詳細過程,謝謝。15 解 易知圍成圖形為x定義在 0,1 上的兩條曲線分別為y x 2及x y 2,...