導函式(注意是導函式)連續有什麼幾何意義嗎?主要用在什麼地方

2021-03-27 12:48:42 字數 7350 閱讀 1498

1樓:匿名使用者

幾何意義:代表函式上某一點在該點處切線的斜率

函式連續且嚴格單調遞增能說明函式可導嗎?

2樓:匿名使用者

不能。例如 分段函式

f(x) = x, x≥0;

f(x) = 2x, x<0.

連續並嚴格單調遞增加, 但在 x = 0 處不可導。

3樓:仲梓貳瑞彩

對\r\n在一元函式中,可導必可微,可微必可導。但對於多元函式,可導與可微是兩個不等價的概念。\r\n函式在某點偏導數存在是函式在該點可微的必要條件而是不是充分條件

導數的幾何意義以及應用

4樓:的大嚇是我

導數最直觀的幾何意義就是曲線在此點處的切線斜率。你可以先用割線來模擬一下,然後最、哦逼近處理就可以得到導數以及相應點處的切線以及斜率了。導數的應用很廣泛,無論是在其他學科例如物理中的加速度概念就可以用導數來求得。

而在數學中,尤其是在高等數學中更是一個不可或缺的概念,在處理微積分問題中,尤其是在數學分析這麼學科中其地位僅次於極限,平行於積分。而在高等數學中,比如微分流形中,導數的概念對於我們研究流形等幾何概念也提供了方法。在數論中我們也可以引進微分,導數的概念去理解處理表示的問題。

此類應用實在是太過廣泛了,而我的介紹也過於寬泛。這只是一個基礎,後續的工作實在太多了。

5樓:

導數(derivative)是微積分中的重要基礎概念。當自變數的增量趨於零時,因變數的增量與自變數的增量之商的極限。在一個函式存在導數時,稱這個函式可導或者可微分。

可導的函式一定連續。不連續的函式一定不可導。導數實質上就是一個求極限的過程,導數的四則運演算法則**於極限的四則運演算法則。

函式y=fx在x0點的導數f'x0的幾何意義表示函式曲線在p0[x導數的幾何意義0fx0] 點的切線斜率。導數的幾何意義是該函式曲線在這一點上的切線斜率。

導數的應用

導數與物理幾何代數關係密切.在幾何中可求切線在代數中可求瞬時變化率在物理中可求速度加速度.

導數亦名紀數、微商微分中的概念是由速度變化問題和曲線的切線問題向量速度的方向而抽象出來的數學概念.又稱變化率.

如一輛汽車在10小時內走了 600千米它的平均速度是60千米/小時.但在實際行駛過程中是有快慢變化的不都是60千米/小時.為了較好地反映汽車在行駛過程中的快慢變化情況可以縮短時間間隔設汽車所在位置s與時間t的關係為

s=ft

那麼汽車在由時刻t0變到t1這段時間內的平均速度是

[f(t1)-f(t0)]/[t1-t0]

當 t1與t0無限趨近於零時汽車行駛的快慢變化就不會很大瞬時速度就近似等於平均速度 。

自然就把當t1→t0時的極限lim[f(t1)-f(t0)]/[t1-t0] 作為汽車在時刻t0的瞬時速度這就是通常所說的速度.這實際上是由平均速度類比到瞬時速度的過程 如我們駕駛時的限「速」 指瞬時速度。

函式連續和一致連續的區別,一致連續的幾何意義是什麼

6樓:不是苦瓜是什麼

區別:1、範圍不同

連續是區域性性質,一般只對單點,而一致連續是整體性質,要對定義域上的某個子集。

2、連續性不同

一致連續的函式必連續,連續的未必一致連續。如果一個函式具有一致連續性則一定具有連續性,而函式具有連續性並不一定具有一致連續性。

3、影象區別

閉區間上連續的函式必一致連續,所以在閉區間上來講二者是一致的;在開區間連續的未必一致連續,一致連續的函式影象不存在上升或者下降的坡度無限變陡的情況,連續的卻有可能出現,比如在(0,1)上連續的函式y=1/x。

一致連續,就是要求當函式的自變數的改變很小時,其函式值的改變也很小,從而要求函式的導數值不能太大——當然只要有界即可。

函式f(x)在[a,b]上一致連續的充分必要條件是 在[a,b]上連續。

函式f(x)在[a,b)上一致連續的充分必要條件是f(x)在(a,b)上連續且f(b-)存在。

如圖在|x1-x2|< ζ範圍內,這兩點之間對應的f(x)滿足,|f(x1)-f(x2)|<ε,就表明它是一致連續的,也就是說在|x1-x2|< ζ  它的影象要儘量平緩,不能有太大幅度的波動,就是一致連續的,如果這個區間上有一點超過了ε,就不是一致連續了。

比如在上圖中,(x1,x2)之間內是一致連續的,而在(x1,x2+1)上就不一致連續。

7樓:匿名使用者

我覺得形象一點粗俗一點來講,不一致連續,就是太陡了。函式上有兩個點,x-x'已經非常非常小,但y-y'還是非常非常大,說明這兩個點還是離得很遠,就相當於這兩個點還是斷開的,沒有一致連續。

為什麼可微推不出偏導數連續?可以幾何意**釋嗎? 10

8樓:阿亮臉色煞白

可微只能推出在該點的偏導數存在,推不出連續,但是可偏導數連續可以推出可微。因為可微的點周圍可能偏導數不存在,如下式,該函式在(0,0)處可微,偏導數都為0,但在該點空心鄰域內偏導數不存在,更談不上連續了.。

可微定義

設函式y= f(x),若自變數在點x的改變數δx與函式相應的改變數δy有關係δy=a×δx+ο(δx)

其中a與δx無關,則稱函式f(x)在點x可微,並稱aδx為函式f(x)在點x的微分,記作dy,即dy=a×δx

當x= x0時,則記作dy∣x=x0.

可微條件

必要條件

若二元函式在某點可微分,則函式在該點必連續;

若函式在某點可微分,則該函式在該點對x和y的偏導數必存在。

充分條件

若函式對x和y的偏導數在這點的某一鄰域內都存在,且均在這點連續,則該函式在這點可微。

導函式是什麼?涉及哪些知識點?用導函式求函式單調性是怎麼回事?麻煩幫助一下,不要說得那麼高深呃……

9樓:匿名使用者

可導函式求導後生成的函式。其實是因為在指定區域內的每一點都有導數,點和對應的導數就構成了新的函式。

導數部分的考點主要包括導數的幾何意義、基本初等函式的導數公式、以及導數的應用。我們可以用導數方便的判定函式的單調性。

簡單的說,我們只要看指定區間上導函式的值是正是負,就知道在這個區間上原函式是增函式還是減函式。

唉,我都開始覺得自己太高深了:-(

10樓:顯示卡色彩校正器

導函式就是描述函式斜率的函式,知道極限就可以了。知道斜率怎麼樣就可以推論了:如果斜率一直大於0,那麼就是一直往上走,那麼就是單增的。

數學中導數的實質是什麼?有什麼實際意義和作用?

11樓:暴走少女

1、導數的實質:

導數是函式的區域性性質。一個函式在某一點的導數描述了這個函式在這一點附近的變化率。如果函式的自變數和取值都是實數的話,函式在某一點的導數就是該函式所代表的曲線在這一點上的切線斜率。

導數的本質是通過極限的概念對函式進行區域性的線性逼近。例如在運動學中,物體的位移對於時間的導數就是物體的瞬時速度。

2、幾何意義:

函式y=f(x)在x0點的導數f'(x0)的幾何意義:表示函式曲線在點p0(x0,f(x0))處的切線的斜率(導數的幾何意義是該函式曲線在這一點上的切線斜率)。

3、作用:

導數與物理,幾何,代數關係密切:在幾何中可求切線;在代數中可求瞬時變化率;在物理中可求速度、加速度。

導數亦名紀數、微商(微分中的概念),是由速度變化問題和曲線的切線問題(向量速度的方向)而抽象出來的數學概念,又稱變化率。

擴充套件資料:

一、導數的計算

計算已知函式的導函式可以按照導數的定義運用變化比值的極限來計算。在實際計算中,大部分常見的解析函式都可以看作是一些簡單的函式的和、差、積、商或相互複合的結果。只要知道了這些簡單函式的導函式,那麼根據導數的求導法則,就可以推算出較為複雜的函式的導函式。

二、導數與函式的性質

1、單調性

(1)若導數大於零,則單調遞增;若導數小於零,則單調遞減;導數等於零為函式駐點,不一定為極值點。需代入駐點左右兩邊的數值求導數正負判斷單調性。

(2)若已知函式為遞增函式,則導數大於等於零;若已知函式為遞減函式,則導數小於等於零。

2、凹凸性

可導函式的凹凸性與其導數的單調性有關。如果函式的導函式在某個區間上單調遞增,那麼這個區間上函式是向下凹的,反之則是向上凸的。

如果二階導函式存在,也可以用它的正負性判斷,如果在某個區間上恆大於零,則這個區間上函式是向下凹的,反之這個區間上函式是向上凸的。曲線的凹凸分界點稱為曲線的拐點。

12樓:匿名使用者

數學中導數的實質是瞬間變化率,在函式曲線中表示在某點切線的斜率,在物理位移時間關係中表示瞬時速度,在速度時間關係中表示瞬時加速度,在經濟中可以表示邊際成本。

導數(derivative)是微積分中的重要基礎概念。當函式y=f(x)的自變數x在一點x0上產生一個增量δx時,函式輸出值的增量δy與自變數增量δx的比值在δx趨於0時的極限a如果存在,a即為在x0處的導數,記作f'(x0)或df/dx(x0)。

導數是函式的區域性性質。一個函式在某一點的導數描述了這個函式在這一點附近的變化率。如果函式的自變數和取值都是實數的話,函式在某一點的導數就是該函式所代表的曲線在這一點上的切線斜率。

導數的本質是通過極限的概念對函式進行區域性的線性逼近。例如在運動學中,物體的位移對於時間的導數就是物體的瞬時速度。

13樓:濂溪之子

導數(derivative)是微積分中的重要基礎概念。當自變數的增量趨於零時,因變數的增量與自變數的增量之商的極限。在一個函式存在導數時,稱這個函式可導或者可微分。

可導的函式一定連續。不連續的函式一定不可導。導數實質上就是一個求極限的過程,導數的四則運演算法則**於極限的四則運演算法則。

亦名紀數、微商,由速度變化問題和曲線的切線問題而抽象出來的數學概念。又稱變化率。

如一輛汽車在10小時內走了 600千米,它的平均速度是60千米/小時,但在實際行駛過程中,是有快慢變化的,不都是60千米/小時。為了較好地反映汽車在行駛過程中的快慢變化情況,可以縮短時間間隔,設汽車所在位置s與時間t的關係為s=f(t),那麼汽車在由時刻t0變到t1這段時間內的平均速度是[f(t1)-f(t0)]/[t1-t0],當 t1與t0很接近時,汽車行駛的快慢變化就不會很大,平均速度就能較好地反映汽車在t0 到 t1這段時間內的運動變化情況 ,自然就把極限[f(t1)-f(t0)]/[t1-t0] 作為汽車在時刻t0的瞬時速度,這就是通常所說的速度。一般地,假設一元函式 y=f(x )在 x0點的附近(x0-a ,x0 +a)內有定義,當自變數的增量δx= x-x0→0時函式增量 δy=f(x)- f(x0)與自變數增量之比的極限存在且有限,就說函式f在x0點可導,稱之為f在x0點的導數(或變化率)。

若函式f在區間i 的每一點都可導,便得到一個以i為定義域的新函式,記作 f',稱之為f的導函式,簡稱為導數。函式y=f(x)在x0點的導數f'(x0)的幾何意義:表示曲線l 在p0〔x0,f(x0)〕 點的切線斜率。

一般地,我們得出用函式的導數來判斷函式的增減性的法則:設y=f(x )在(a,b)內可導。如果在(a,b)內,f'(x)>0,則f(x)在這個區間是單調增加的。。

如果在(a,b)內,f'(x)<0,則f(x)在這個區間是單調減小的。所以,當f'(x)=0時,y=f(x )有極大值或極小值,極大值中最大者是最大值,極小值中最小者是最小值。

導數的幾何意義是該函式曲線在這一點上的切線斜率。

(1)求函式y=f(x)在x0處導數的步驟:

① 求函式的增量δy=f(x0+δx)-f(x0)

② 求平均變化率

③ 取極限,得導數。

(2)幾種常見函式的導數公式:

① c'=0(c為常數函式);

② (x^n)'= nx^(n-1) (n∈q);

③ (sinx)' = cosx;

④ (cosx)' = - sinx;

⑤ (e^x)' = e^x;

⑥ (a^x)' = a^xlna (ln為自然對數)

⑦ (inx)' = 1/x(ln為自然對數)

⑧ (logax)' =(xlna)^(-1),(a>0且a不等於1)

補充一下。上面的公式是不可以代常數進去的,只能代函式,新學導數的人往往忽略這一點,造成歧義,要多加註意。

(3)導數的四則運演算法則:

①(u±v)'=u'±v'

②(uv)'=u'v+uv'

③(u/v)'=(u'v-uv')/ v^2

(4)複合函式的導數

複合函式對自變數的導數,等於已知函式對中間變數的導數,乘以中間變數對自變數的導數--稱為鏈式法則。

導數是微積分的一個重要的支柱。牛頓及萊布尼茨對此做出了卓越的貢獻!

導數的應用

1.函式的單調性

(1)利用導數的符號判斷函式的增減性

利用導數的符號判斷函式的增減性,這是導數幾何意義在研究曲線變化規律時的一個應用,它充分體現了數形結合的思想.

一般地,在某個區間(a,b)內,如果>0,那麼函式y=f(x)在這個區間內單調遞增;如果<0,那麼函式y=f(x)在這個區間內單調遞減.

如果在某個區間內恆有=0,則f(x)是常函式.

注意:在某個區間內,>0是f(x)在此區間上為增函式的充分條件,而不是必要條件,如f(x)=x3在內是增函式,但.

(2)求函式單調區間的步驟

①確定f(x)的定義域;

②求導數;

③由(或)解出相應的x的範圍.當f'(x)>0時,f(x)在相應區間上是增函式;當f'(x)<0時,f(x)在相應區間上是減函式.

2.函式的極值

(1)函式的極值的判定

①如果在兩側符號相同,則不是f(x)的極值點;

②如果在附近的左側,右側,那麼,是極大值或極小值.

3.求函式極值的步驟

①確定函式的定義域;

②求導數;

③在定義域內求出所有的駐點,即求方程及的所有實根;

④檢查在駐點左右的符號,如果左正右負,那麼f(x)在這個根處取得極大值;如果左負右正,那麼f(x)在這個根處取得極小值.

4.函式的最值

(1)如果f(x)在〔a,b〕上的最大值(或最小值)是在(a,b)內一點處取得的,顯然這個最大值(或最小值)同時是個極大值(或極小值),它是f(x)在(a,b)內所有的極大值(或極小值)中最大的(或最小的),但是最值也可能在〔a,b〕的端點a或b處取得,極值與最值是兩個不同的概念.

(2)求f(x)在[a,b]上的最大值與最小值的步驟

①求f(x)在(a,b)內的極值;

②將f(x)的各極值與f(a),f(b)比較,其中最大的一個是最大值,最小的一個是最小值.

5.生活中的優化問題

生活中經常遇到求利潤最大、用料最省、效率最高等問題,這些問題稱為優化問題,優化問題也稱為最值問題.解決這些問題具有非常現實的意義.這些問題通常可以轉化為數學中的函式問題,進而轉化為求函式的最大(小)值問題.

處處可導的函式其導函式處處連續嗎

f n x n e x dx,積分下限為0,上限為 1781年瑞士數學家尤拉給出的,詳見 不可思議的e 的p133 p134。可導比連續強。可導必定連續。請問,處處可導的函式,導函式一定是連續的麼?這破機器人隨便搜的答案你也信?答案是否定的 連續可導的函式,既然可導,說明定義域內,連續的要求比存在的...

原函式可導為什麼導函式不一定連續

原函式可導,導函式不一定連續。舉例說明如下 當x不等於0時,f x x 2 sin 1 x 當x 0時,f x 0 這個函式在 處處可導。導數是f x 當x不等於0時,f x 2xsin 1 x cos 1 x 當x 0時,f x lim lim xsin 1 x x 0 0 lim f x x 0...

什麼函式處處連續處處不可導,求證下面的函式處處連續,卻處處不可導

皮亞諾函式 f x 1 a n sin b n x 其中0 a 1 f x 極限存在,導數不存在。weierstrass函式 求證 下面的函式處處連續,卻處處不可導 顯然級數每一項都小於等於an 其極 限為0 則級數收斂 f x x f x 當 x 0時,極限為0,則連續。然後只需證明 f x x ...