設函式f x 具有二階導數,g x)f(0)(1 x) f(1)x,則在區間

2022-04-15 23:05:26 字數 3820 閱讀 3344

1樓:王昂然亥炫

【詳解1】如果對曲線在區間[a,b]上凹凸的定義比較熟悉的話,可以直接做出判斷.如果對區間上任意兩點x1,x2及常數0≤λ≤1,恆有f((1-λ)x1+λx2)≥(1-λ)f(x1)+λf(x2),則曲線是凸的.顯然此題中x1=0,x2=1,λ=x,則(1-λ)f(x1)+λf(x2)=f(0)(1-x)+f(1)x=g(x),而f((1-λ)x1+λx2)=f(x),故當f''(x)≤0時,曲線是凸的,即f((1-λ)x1+λx2)≥(1-λ)f(x1)+λf(x2),也就是f(x)≥g(x),故應該選c【詳解2】如果對曲線在區間[a,b]上凹凸的定義不熟悉的話,可令f(x)=f(x)-g(x)=f(x)-f(0)(1-x)-f(1)x,則f(0)=f(1)=0,且f''(x)=f''(x),故當f''(x)≤0時,曲線是凸的,從而f(x)≥f(0)=f(1)=0,即f(x)=f(x)-g(x)≥0,也就是f(x)≥g(x),故應該選:c.

2樓:招醉易祿鬱

當f″(x)

≥0時,f(x)是凹函式

而g(x)是連線0,f(0)與(1,f(1))的直線段。選d。

設函式f(x)具有二階導數,g(x)=f(0)(1-x)+f(1)x,則在區間[0,1]上……

3樓:du知道君

【詳解1】如果對

bai曲線在區間

du[a,b]上凹凸的定義比

zhi較熟悉的話,可dao以直接做出判斷.如果對回區間上任意兩點答x1,x2及常數0≤λ≤1,恆有f((1-λ)x1+λx2)≥(1-λ)f(x1)+λf(x2),則曲線是凸的.顯然此題中x1=0,x2=1,λ=x,則(1-λ)f(x1)+λf(x2)=f(0)(1-x)+f(1)x=g(x),而f((1-λ)x1+λx2)=f(x),故當f''(x)≤0時,曲線是凸的,即f((1-λ)x1+λx2)≥(1-λ)f(x1)+λf(x2),也就是f(x)≥g(x),故應該選c【詳解2】如果對曲線在區間[a,b]上凹凸的定義不熟悉的話,可令f(x)=f(x)-g(x)=f(x)-f(0)(1-x)-f(1)x,則f(0)=f(1)=0,且f''(x)=f''(x),故當f''(x)≤0時,曲線是凸的,從而f(x)≥f(0)=f(1)=0,即f(x)=f(x)-g(x)≥0,也就是f(x)≥g(x),故應該選:c.

設函式f(x)具有二階導數,g(x)=f(0)(1-x)+f(1)x,則在[0,1]上(  )a.當f′(x)≥0時,f

4樓:手機使用者

【詳解1】如果對曲線在區間[a,b]上凹

凸的定義比較熟悉的話,可以直接做出判斷.

回如果對區間上答任意兩點x1,x2及常數0≤λ≤1,恆有f((1-λ)x1+λx2)≥(1-λ)f(x1)+λf(x2),則曲線是凸的.

顯然此題中x1=0,x2=1,λ=x,則(1-λ)f(x1)+λf(x2)=f(0)(1-x)+f(1)x=g(x),而f((1-λ)x1+λx2)=f(x),

故當f''(x)≤0時,曲線是凸的,即f((1-λ)x1+λx2)≥(1-λ)f(x1)+λf(x2),也就是f(x)≥g(x),

故應該選c

【詳解2】如果對曲線在區間[a,b]上凹凸的定義不熟悉的話,可令f(x)=f(x)-g(x)=f(x)-f(0)(1-x)-f(1)x,則f(0)=f(1)=0,且f''(x)=f''(x),故當f''(x)≤0時,曲線是凸的,從而f(x)≥f(0)=f(1)=0,即f(x)=f(x)-g(x)≥0,也就是f(x)≥g(x),

故應該選:c.

設f(x)具有二階導數,g(x)=f(0)(1-x)+f(1)x,則在區間[0,1]上

設函式f(x)在區間[0,1]上具有二階導數,且f(1)>0,lim(趨於0+時)f(x)/x<0

5樓:匿名使用者

這道題能得出兩個點是0的點。

第一個是f(0),用的是保號性,負代換做一下就行了。

第二個就是17年的真題,用的也是保號性,證出(0,0+δ)區域裡有fx<0,f(1)大於0,零點定理,至少存一

6樓:和藹的方法

lim趨於0+,f(x)/x小於0,說明在x趨於0+的鄰域中,x大於0,而f(x)小於0,又因為f1大於0,由連續函式介值定理(或零點定理),知存在一點x使得fx=0,即存在一個實根

7樓:匿名使用者

【詳解1】如bai果對曲線在區間du[a,b]上凹凸zhi的定義比較熟悉dao的話,可以直接內做出判斷.如果對區間容上任意兩點x1,x2及常數0≤λ≤1,恆有f((1-λ)x1+λx2)≥(1-λ)f(x1)+λf(x2),則曲線是凸的.顯然此題中x1=0,x2=1,λ=x,則(1-λ)f(x1)+λf(x2)=f(0)(1-x)+f(1)x=g(x),而f((1-λ)x1+λx2)=f(x),故當f''(x)≤0時,曲線是凸的,即f((1-λ)x1+λx2)≥(1-λ)f(x1)+λf(x2),也就是f(x)≥g(x),故應該選c 【詳解2】如果對曲線在區間[a,b]上凹凸的定義不熟悉的話,可令f(x)=f(x)-g(x)=f(x)-f(0)(1-x)-f(1)x,則f(0)=f(1)=0,且f''(x)=f''(x),故當f''(x)≤0時,曲線是凸的,從而f(x)≥f(0)=f(1)=0,即f(x)=f(x)-g(x)≥0,也就是f(x)≥g(x),故應該選:c.

8樓:小牛人灬

證明不出來我覺得,張宇的書有問題

設函式f(x)具有連續的二階導數,且f'(0)=0,limf''(x)/|x|=1,則f(0)是f(x)的極小值

9樓:demon陌

|imf''(x)/|x|=1表明x=0附近(即某鄰域),f''(x)/|x|>0, f''(x)>0, f'(x)遞增, x<0, f'(x)0, f'(x)>f'(0)=0,所f(0)極值。

極值是一個函式的極大值或極小值。如果一個函式在一點的一個鄰域內處處都有確定的值,而以該點處的值為最大(小),這函式在該點處的值就是一個極大(小)值。

如果它比鄰域內其他各點處的函式值都大(小),它就是一個嚴格極大(小)。該點就相應地稱為一個極值點或嚴格極值點。

10樓:匿名使用者

先說解法:

關於其它一些東西:

(1) 確實有 f''(0) = 0

(2) 一般來講(不針對這道題),當 f『』(0) = 0 時,即可能是極小值,也可能是極大值,也可能不是極值。比如:2-3階導數都是0,但4階導數連續且大於0,則它仍然是極小值(證法與這道題類似,都是泰勒)。

例如函式:f(x) = x^4

(3) 這道題比較特殊,f''(0) = 0,仍能推出在一個鄰域內,f''(x) > 0,成為是極小值的關鍵。

設奇函式f(x)在[-1,1]上具有二階導數,且f(1)=1,證明:(1)存在ξ∈(0,1),使得f′(ξ)=1;

11樓:匿名使用者

證明如下:

1、由於f(x)為奇函式,則f(0)=0,由於f(x)在[-1,1]上具有二階導數,由拉格朗日定理,存在ξ∈(0,1),使得f′(ξ)=f(1)−f(0)  /  1−0   =1

2、由於f(x)為奇函式,則f'(x)為偶函式,由(1)可知存在ξ∈(0,1),使得f'(ξ)=1,且f'(-ξ)=1,

令φ(x)=f'(x)+f(x),由條件顯然可知在φ(x)在[-1,1]上可導,由拉格朗日中值定理可知,存在η∈(-1,1),使得φ(1)−φ(−1)  / 1−(−1)    =φ′(η)成立;

φ(1)-φ(-1)=f'(1)+f(1)-f'(-1)-f(-1)=2f(1)=2,從而φ'(η)=1成立,即f''(η)+f'(η)=1

設函式fx具有二階導數,gxf01xf

詳解1 如果對 bai曲線在區間 du a,b 上凹凸的定義比 zhi較熟悉的話,可dao以直接做出判斷.如果對回區間上任意兩點答x1,x2及常數0 1,恆有f 1 x1 x2 1 f x1 f x2 則曲線是凸的.顯然此題中x1 0,x2 1,x,則 1 f x1 f x2 f 0 1 x f 1...

設函式fx具有二階導數,並滿足fxfx,且

由f x 源 f x 1 知,f x 是週期為1的周期函式,而可導的周期函式的導函式仍為周期函式,因而f x f x 均是週期為1的周期函式.又f x 為奇函式,故 0 f 0 f 1 f 2 f 5 f 1 f 0 f 1 f 2 f 5 0,且 f 0 f 1 f 2 f 5 又因 f x 為偶...

設函式fx具有連續的二階導數,且f00,limf

1 的倒數第二行,因此分母極限是0 應為 分子極限是0 寫錯。2 的第二個極限是f 0 1 發現錯誤的時候寫的word沒儲存就關掉了.設f x 有二階連續導數,且f 0 0,lim x 0 f x x 1,則?f bai a 0,f a 0 只是f x 在x a 處取極值的 du充分條件,非必要條件...