怎麼判斷雜化軌道的型別,怎樣判斷雜化軌道型別

2021-09-02 09:16:06 字數 4873 閱讀 1076

1樓:墨汁諾

通過成鍵電子對數與孤電子對數可判斷中心原子雜化模型,成鍵電子對數:abn中n的值;孤電子對數:(a價電子數-a成鍵電子數)/2。

軌道的相互疊加過程叫原子軌道的雜化。原子軌道疊加後產生的新的原子軌道叫雜化軌道。在形成分子(主要是化合物)時,同一原子中能量相近的原子軌道 (一般為同一能級組的原子軌道) 相互疊加(雜化)形成一組的新的原子軌道。

2樓:摯愛戴拿

軌道的相互疊加過程叫原子軌道的雜化。原子軌道疊加後產生的新的原子軌道叫雜化軌道。 ⑴ 在形成分子(主要是化合物)時,同一原子中能量相近的原子軌道 (一般為同一能級組的原子軌道) 相互疊加(雜化)形成一組的新的原子軌道。

⑵ 雜化軌道比原來的軌道成鍵能力強,形成的化學鍵鍵能大,使生成的分子更穩定。由於成鍵原子軌道雜化後,軌道角度分佈圖的形狀發生了變化(形狀是一頭大,一頭小),雜化軌道在某些方向上的角度分佈,比未雜化的p軌道和s軌道的角度分佈大得多,它的大頭在成鍵時與原來的軌道相比能夠形成更大的重疊,因此雜化軌道比原有的原子軌道成鍵能力更強。 ⑶ 形成的雜化軌道之間應儘可能地滿足最小排斥原理(化學鍵間排斥力越小,體系越穩定),為滿足最小排斥原理, 雜化軌道之間的夾角應達到最大。

⑷ 分子的空間構型主要取決於分子中σ鍵形成的骨架,雜化軌道形成的鍵為σ鍵,所以,雜化軌道的型別與分子的空間構型相關。 雜化型別有 1)sp雜化 同一原子內由一個ns軌道和一個np軌道發生的雜化,稱為sp雜化。雜化後組成的軌道稱為sp雜化軌道。

sp雜化可以而且只能得到兩個sp雜化軌道。實驗測知,氣態becl2中的鈹原子就是發生sp雜化,它是一個直線型的共價分子。be原子位於兩個cl原子的中間,鍵角180°,兩個be-cl鍵的鍵長和鍵能都相等 2)sp2雜化 同一原子內由一個ns軌道和二個np軌道發生的雜化,稱為sp2雜化。

雜化後組成的軌道稱為sp2雜化軌道。氣態氟化硼(bf3)中的硼原子就是sp2雜化,具有平面三角形的結構。b原子位於三角形的中心,三個b-f鍵是等同的,鍵角為120° (3)sp3雜化 同一原子內由一個ns軌道和三個np軌道發生的雜化,稱為sp3雜化,雜化後組成的軌道稱為sp3雜化軌道。

sp3雜化可以而且只能得到四個sp3雜化軌道。ch4分子中的碳原子就是發生sp3雜化,它的結構經實驗測知為正四面體結構,四個c-h鍵均等同,鍵角為109°28′。這樣的實驗結果,是電子配對法所難以解釋的,但雜化軌道理論認為,激發態c原子(2s12p3)的2s軌道與三個2p軌道可以發生sp3雜化,從而形成四個能量等同的sp3雜化軌道

3樓:秒懂百科

雜化軌道:一種現代價鍵理論

4樓:劉鵬

雜軌數=中心原子孤對電子對數+中心原子結合的原子數 =中心原子價電子對數(形成si ge ma 鍵) =(中心原子價電子對數+配位原子提供的電子數-離子帶電荷數)/2 o,s作配位原子時不計入總數 若價電子總數為奇數以總數加一處理,如no2 屬於vsepr的ay4分子的中心原子a全取sp3雜化,ay3的原子或離子大都取sp2雜化,ay2全取sp雜化。 追問: 具體說說。

舉個例子 回答: co2:雜軌數=0+2=2,為sp雜化; no2:

(5+0-0+1)/2=3,sp2雜化; ch4:,sp3雜化。

希望採納

怎樣判斷雜化軌道型別

5樓:匿名使用者

首先,你應該掌握一般簡單分子的幾何構型,如:甲烷為正四面體,氨氣為三角錐型,三氟化硼為平面三角形,甲基正四面體,等等。可以根據分子或基團的幾何構型來判斷中心原子的雜化方式。

正四面體型或三角錐形為sp3雜化,平面三角形為sp2雜化,直線型為sp雜化(關於雜化原理可以在大學任何一本無機化學書上找到,這是最基礎的理論)。至於某種雜化方式為什麼有其特定的空間構型,這是因為各軌道中電子互斥,為降低分子或基團的整體熱力學能,各軌道間就形成了一種特定的空間關係,這樣就決定了分子或基團的空間構型。也就可以逆向的從空間構型來判斷雜化方式了。

其次,可以看中心原子上不飽和鍵的情況,一個雙鍵表示中心原子有一個pai鍵,即中心原子有一個p軌道(p軌道表示該軌道未參加雜化,參加雜化後的軌道用sp、sp2或sp3表示,具體看鍵的型別),可以判定該中心原子採用的是sp2雜化;若有一個三鍵則表示中心原子有兩條p軌道,判定為sp雜化(如乙炔),如果沒有不飽和鍵,則為sp3雜化。

不過要提醒你的是,上述方法適用於第二週期元素,當原子有d、f軌道時雜化較複雜,討論也較少,掌握上述方法就基本可以了。不知你對回答是否滿意

6樓:秒懂百科

雜化軌道:一種現代價鍵理論

7樓:匿名使用者

verse理論判斷,具體查《無機化學》,講得很詳細。樓下說的太少了,還有d3sp2,sp2d3等更復雜的雜化,這種簡單構型就沒用了

雜化軌道型別如何判斷

8樓:煙妮載樂雙

一個原子中的幾個原子軌道經過再分配而組成的互相等同的軌道。原子在化合成分子的過程中,根據原子的成鍵要求,在周圍原子影響下,將原有的原子軌道進一步線性組合成新的原子軌道。這種在一個原子中不同原子軌道的線性組合,稱為原子軌道的雜化。

雜化後的原子軌道稱為雜化軌道。雜化時,軌道的數目不變,軌道在空間的分佈方向和分佈情況發生改變。組合所得的雜化軌道一般均和其他原子形成較強的σ鍵或安排孤對電子,而不會以空的雜化軌道的形式存在。

在某個原子的幾個雜化軌道中,全部由成單電子的軌道參與的雜化,稱為等性雜化軌道;有孤對電子參與的雜化,稱為不等性雜化軌道。

雜化軌道具有和s,p等原子軌道相同的性質,必須滿足正交,歸一性。

價鍵理論對共價鍵的本質和特點做了有力的論證,但它把討論的基礎放在共用一對電子形成一個共價鍵上,在解釋許多分子、原子的價鍵數目及分子空間結構時卻遇到了困難。例如c原子的價電子是2s22p2,按電子排布規律,2個s電子是已配對的,只有2個p電子未成對,而許多含碳化合物中c都呈4價而不是2價,可以設想有1個s電子激發到p軌道去了。那麼1個s軌道和3個p軌道都有不成對電子,可以形成4個共價鍵,但s和p的成鍵方向和能量應該是不同的。

而實驗證明:ch4分子中,4個c-h共價鍵是完全等同的,鍵長為114pm,鍵角為109.5°。

bcl3,becl2,pcl3等許多分子也都有類似的情況。為了解釋這些矛盾,2023年pauling提出了雜化軌道概念,豐富和發展了的價鍵理論。他根據量子力學的觀點提出:

在同一個原子中,能量相近的不同型別的幾個原子軌道在成鍵時,可以互相疊加重組,成為相同數目、能量相等的新軌道,這種新軌道叫雜化軌道。c原子中1個2s電子激發到2p後,1個2s軌道和3個2p軌道重新組合成4個sp3雜化軌道,它們再和4個h原子形成4個相同的c-h鍵,c位於正四面體中心,4個h位於四個頂角。

雜化軌道種類很多,如三氯化硼(bcl3)分子中b有sp2雜化軌道,即由1個s軌道和2個p軌道組合成3個sp2雜化軌道,在氯化鈹(becl2)中有sp雜化軌道,在過渡金屬化合物中還有d軌道參與的sp3d和sp3d2雜化軌道等。以上幾例都是闡明瞭共價單鍵的性質,至於乙烯和乙炔分子中的雙鍵和三鍵的形成,又提出了σ鍵和π鍵的概念。如把兩個成鍵原子核間聯線叫鍵軸,把原子軌道沿鍵軸方向「頭碰頭」的方式重疊成鍵,稱為σ鍵。

把原子軌道沿鍵軸方向「肩並肩」的方式重疊,稱為π鍵。例如在乙烯(

)分子中有碳碳雙鍵(c=c),碳原子的激發態中2px,2py和2s形成sp2雜化軌道,這3個軌道能量相等,位於同一平面並互成120℃夾角,另外一個2pz軌道未參與雜化,位於與平面垂直的方向上。碳碳雙鍵中的sp2雜化如下所示。

這3個sp2雜化軌道中有2個軌道分別與2個h原子形成σ單鍵,還有1個sp2軌道則與另一個c的sp2軌道形成頭對頭的σ鍵,同時位於垂直方向的pz軌道則以肩並肩的方式形成了π鍵。也就是說碳碳雙鍵是由一個σ鍵和一個π鍵組成,即雙鍵中兩個鍵是不等同的。π鍵原子軌道的重疊程度小於σ鍵,π鍵不穩定,容易斷裂,所以含有雙鍵的烯烴很容易發生加成反應,如乙烯(h2c=ch2)和氯(cl2)反應生成氯乙烯(cl—ch2—ch2—cl)。

乙炔分子(c2h2)中有碳碳三鍵(hc≡ch),激發態的c原子中2s和2px軌道形成sp雜化軌道。這兩個能量相等的sp雜化軌道在同一直線上,其中之一與h原子形成σ單鍵,另外一個sp雜化軌道形成c原子之間的σ鍵,而未參與雜化的py與pz則垂直於x軸並互相垂直,它們以肩並肩的方式與另一個c的py,pz形成π鍵。即碳碳三鍵是由一個σ鍵和兩個π鍵組成。

這兩個π鍵不同於σ鍵,軌道重疊也較少並不穩定,因而容易斷開,所以含三鍵的炔烴也容易發生加成反應。

vsepr(價電子層互斥模型)

通過成鍵電子對數與孤電子對數可判斷中心原子雜化模型,成鍵電子對數:abn中n的值;孤電子對數:(a價電子數-a成鍵電子數)/2。

價電子對總數即兩者之和,如價電子對總數為2時為sp雜化(直線形),為3時為sp2雜化(平面三角形),為4時為sp3雜化(四面體),5——sp3d(三角雙錐),6——sp3d2(八面體)。而成鍵電子對數與孤電子對數的不同使得分子的幾何構型不同。

9樓:暨半凡招芬

首先,你應該掌握一般簡單分子的幾何構型,如:甲烷為正四面體,氨氣為三角錐型,三氟化硼為平面三角形,甲基正四面體,等等。可以根據分子或基團的幾何構型來判斷中心原子的雜化方式。

正四面體型或三角錐形為sp3雜化,平面三角形為sp2雜化,直線型為sp雜化(關於雜化原理可以在大學任何一本無機化學書上找到,這是最基礎的理論)。至於某種雜化方式為什麼有其特定的空間構型,這是因為各軌道中電子互斥,為降低分子或基團的整體熱力學能,各軌道間就形成了一種特定的空間關係,這樣就決定了分子或基團的空間構型。也就可以逆向的從空間構型來判斷雜化方式了。

其次,可以看中心原子上不飽和鍵的情況,一個雙鍵表示中心原子有一個pai鍵,即中心原子有一個p軌道(p軌道表示該軌道未參加雜化,參加雜化後的軌道用sp、sp2或sp3表示,具體看鍵的型別),可以判定該中心原子採用的是sp2雜化;若有一個三鍵則表示中心原子有兩條p軌道,判定為sp雜化(如乙炔),如果沒有不飽和鍵,則為sp3雜化。

不過要提醒你的是,上述方法適用於第二週期元素,當原子有d、f軌道時雜化較複雜,討論也較少,掌握上述方法就基本可以了。不知你對回答是否滿意

如何判斷分子式的雜化軌道,如何判斷一個分子式的雜化軌道?

雜化軌道 一種現代價鍵理論 用價電子對互斥理論來說,是看中心原子的成鍵電子對數。不論是成單鍵 雙鍵還是三鍵,都各自看成是一對價電子對。比如甲烷,中心碳原子四個單鍵,四個成鍵電子對。再如乙烯,中心碳原子二個單鍵一個雙鍵,三個成鍵電子對。再如乙炔,中心碳原子一個單鍵一個三鍵,兩個成鍵電子對。第二步通過成...

關於化學中的雜化軌道,在化學中,雜化軌道是指什麼?

例如,原來的s軌道是球形對稱的,p軌道是啞鈴形或紡錘形,經過雜化後,得到的軌道形狀是一頭大,一頭小,這個你知道了。當它成鍵時,會利用大頭,即電子雲相對較多的一頭去重疊成鍵,不就重疊的更多了嗎,電子雲重疊程度打了,形成的化學鍵也就更穩定了,即成鍵能力增大了。方向性更強?沒有這個說法,無論是否雜化,在形...

怎麼判斷自己的身材型別

如何正確的判斷自己的身材是 重要的第一步 要判斷自己的身材型別可以用高矮稱秤的方式來看,可以來岀自己的達標量來看。回答一般我們常說的那種身材,可以分為x型 h型 三角形以及倒三角形。還有的分為蘋果型 沙漏型 梨型身材以及葫蘆型身材,叫法不同但是區分大同小異 x型也可以稱沙漏型,屬於社會審美中身材比例...